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Problem
• A very typical statistical/econometric model assumes

something like

yt ∼ i.i.d. f (y , x , θ) (1)

where f (·) is a parametric family known up to
parameters θ.

• Parameter estimation: maximum likelihood

θ̂n = arg max
∑

t

ln f (Yt ,Xt , θ) (2)

• What if the basic model assumptions of (1) are
violated? The parametric family may not contain the
true model f0(x , y) that generated the data; or the data
may not be i.i.d.; etc.



Misspecified
Models

Stas
Kolenikov

U of Missouri

Problem

Huber (1967)

White (1982)

Gourieroux et.
al. (1984)

Sandwich
estimator

References

Huber’s (1967) framework
Let X1,X2, . . . are independent random variables with values
in X- having the common probability distribution P.
Huber (1967) considers two situations:
• (near-)minimization of an objective function

1
n

∑
t

ρ(Xt , θ̂n)− inf
Θ

1
n

∑
t

ρ(Xt , θ) → 0 (3)

• estimating equations

1
n

∑
t

ψ(Xt , θ̂n) → 0 ∈ IRp (4)

The estimating equations may be the derivatives of the
objective function from (3), or may come as (exactly
identified) system of equations (method of moments,
instrumental variables, . . . )
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Estimating equations
• Linear regression:

∑
t(yt − Xtβ)2 → min ⇒ normal

equations:

−2
∑

t

(yt − Xtβ)Xt = 0 ∈ IRp (5)

• Instrumental equations (exactly ID):∑
t

(yt − Xtβ)Zt = 0 (6)

• Logit model:

ln L(yt ,Xt , β) =
∑

t

yt ln Λ(Xtβ) + (1− yt) ln
(
1− Λ(Xtβ)

)
,

Λ(z) =
(
1 + exp(−z)

)−1 (7)

Likelihood scores:
∂ ln L
∂β

=
∑

t

Xt
(
yt − Λ(Xtβ)

)
= 0 (8)
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Huber’s (1967) results
Under certain regularity conditions (next slide),
• the sequence of estimators θ̂n a.s. stays in a compact

set
• the estimators θ̂n are strongly consistent
• the estimators θ̂n are asymptotically normal
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Regularity conditions
Regularity conditions usually refer to the conditions on objective
functions, their derivatives, parameter spaces, etc., that are
necessary for all mathematical expressions to be well defined,
and all derivations to be fully justified.
E.g., in order to take Taylor series expansion to apply the delta
method, one needs that

1 the point θ0 where expansion is to be taken is contained in
the parameter space along with some neighborhood, so
there is “enough room to step around” (i.e., θ0 is an interior
point of the parameter space)

2 the function to be expanded such as l(Y ,X , θ) is defined in a
neighborhood of the expansion point θ0

3 the function is sufficiently smooth in a neighborhood of θ0

Some of those conditions would need to hold with probability 1, or
with probability tending to 1 as n →∞.
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Huber’s (1967) regularity
• Local compactness of the space of θ
• Measurability and separability of the objective function
ρ(·) and estimating functions ψ(·) over the space of X

• Sufficient smoothness with respect to θ: lower
semicontinuity of ρ(·); a.s. continuity of ψ(·).

• Boundedness of the objective function ρ(·), estimating
functions ψ(·), and their expectations

• Lower boundedness of γ(θ) = E ρ(X , θ)∀θ
• Uniqueness and sufficient separation of population

minimum θ0 of γ(·) at the interior of the parameter
space

• Well defined expectation λ(θ) = Eψ(X , θ) with a unique
zero at θ0

• Lipschitz conditions on expectations of
u(x , θ,d) = sup|τ−θ|≤d |ψ(x , τ)− ψ(x , θ)| and its square

• Finite E |ψ(x , θ0)|2

http://en.wikipedia.org/wiki/Semi-continuity
http://en.wikipedia.org/wiki/Semi-continuity
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Huber (1967): idea of proof
• Consistency: ε-manipulations with inf 1

n
∑

t ρ(Xt , θ) or
sup 1

n
∑

t |ψ(Xt , θ)− λ(θ)|
• Asymptotic normality:

1 bound in probability the differences ψ(x , θ)− λ(θ) (tail
conditions for CLT)

2 show asymptotic equivalence of 1√
n

∑
t ψ(Xt , θ0) and

√
nλ(θ̂n)

3 asymptotic normality of θ̂n then follows by the standard
delta method argument:

√
n(θ̂n − θ0)

d−→ N
(
0,A−1BA−T )

,

A = E ∂ψ(X , θ0), B = Eψ(X , θ0)ψ(X , θ0)
T (9)

Other proofs based on Brower’s fixed point theorem are
available (Maronna 1976).
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Origins of the sandwich
Estimating equations: ψ(X , θ̂n) = 0.
Taylor series expansion of ψ(·):

√
n
(
ψ(X , θ̂n)− ψ(X , θ0)

)
=

= ∂ψ(X , θ0)
√

n(θ̂n − θ0) + op(
√

n‖θ̂n − θ0‖)
∼ N

(
0,V[ψ(X1, θ0)]

)
as the sum of i.i.d. terms ψ(Xi , θ0). Hence,

√
n(θ̂n − θ0) ≈ −

√
nA−1ψ(X , θ0) + op(

√
n‖θ̂n − θ0‖)

d−→ N(0,A−1BA−T )
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M-estimates
• Later work by Huber: foundations of robust statistics;

M-estimates defined through optimization of a certain
criteria (aka extremum estimators in econometrics)

• Huber (1974), Hampel, Ronchetti, Rousseeuw & Stahel
(2005), Maronna, Martin & Yohai (2006)

• Huber (1967) is still the cornerstone paper! It gives the
most general conditions for consistency and asymptotic
normality of M-estimates
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White (1982)
White (1982) is a culmination of his preceding work on
misspecified models.

• Interpretation of θ0: the quasi-MLEs define the density
that minimizes the Kullback-Leibler distance between
the distributions E

[
ln P(x)/f (x , θ0)

]
• Weaker regularity conditions that are easier to verify
• Information matrix test for misspecification
• Hausman test for misspecification

http://en.wikipedia.org/wiki/Kullback-Leibler_divergence


Misspecified
Models

Stas
Kolenikov

U of Missouri

Problem

Huber (1967)

White (1982)

Gourieroux et.
al. (1984)

Sandwich
estimator

References

Notation
Quasi-log-likelihood:

ln(X , θ) =
1
n

∑
t

ln f (Xt , θ) (10)

θ̂n = arg max
Θ

ln(X , θ) (11)

An(θ) = n−1
∑

i

∂2 ln f (Xi , θ),

Bn(θ) = n−1
∑

i

∂ ln f (Xi , θ)∂
′ ln f (Xi , θ)

A(θ) = E ∂2 ln f (X , θ),
B(θ) = E ∂ ln f (X , θ)∂′ ln f (X , θ)

Cn(θ) = An(θ)
−1Bn(θ)An(θ)

−T , C(θ) = A(θ)−1B(θ)A(θ)−T

(12)
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White’s (1982) regularity
conditions

• The independent random vectors Xt have a distribution with
(Radon-Nykodym) density g(·), and the parametric family of
distribution functions all have densities f (u, θ)

• f (u, θ) and ∂ ln f/∂θ are measurable in u and continuous in θ

• |∂2 ln f/∂θi ∂θj |, |∂ ln f/∂θi · ∂ ln f/∂θj | and |∂(f∂/∂θi) / ∂θj | are
dominated by functions integrable in u

• The parameter space is compact

• E | ln g(X )| <∞, | ln f (x , θ)| is bounded uniformly in θ

• Kullback-Leibler info I(g : f , θ) = E ln g(X )/f (X , θ) has a
unique minimum at θ0

• θ0 ∈ int Θ; |B(θ)| 6= 0; rk A(θ) is constant in a neighborhood
of θ0

• supp f does not depend on θ
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White’s (1982) results
Some theorems require only a subset of regularity
conditions

• Theorem 2.1: existence of QMLE θ̂n

• Theorem 2.2: strong consistency: θ̂n
a.s.−→ θ0

• Theorem 3.1: identifiability of the model
• Theorem 3.2: asymptotic normality:

√
n(θ̂n − θ0)

d−→ N
(
0,C(θ0)

)
; Cn(θ̂n)

a.s.−→ C(θ0) (13)

• Theorem 3.3: if the model is correctly specified, then

−A(θ0) = B(θ0) = C−1(θ0) (14)

(information matrix identity in max likelihood)
• Theorems 3.4 and 3.5: Wald and Lagrange multiplier

(score) tests
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Information matrix test
• Under correct specification, H0 : A(θ0) + B(θ0) = 0. Can we

test it?

• Let dl(x , θ) = ∂ ln f
∂θi

∂ ln f
∂θj

+ ∂2 ln f
∂θi∂θj

, where l enumerates the pairs
(i , j), l = 1, . . . ,q ≤ p(p + 1)/2 (subset of interest?)

• Indicators Dln(θ̂n) = n−1 ∑
t dl(Xt , θ̂n) are asymptotically

normal ⇐ regularity

• Define q × p Jacobian ∇D = E ∂dl(X , θ)/∂θk , V (θ) =

E
[

outer product of d(X , θ)−∇D(θ)A(θ)−1∇ ln f (X , θ)
]

and
their sample analogues

• Theorem 4.1: H0 : g(x) = f (x , θ0),V (θ0) > 0 ⇒

(i)
√

nDn(θ̂n)
d−→ N

(
0,V (θ0)

)
(ii) Vn(θ̂n)

a.s.−→ V (θ0)

(iii) Jn = nDn(θ̂n)Vn(θ̂n)
−1Dn(θn)

d−→ χ2
q (15)

• Should have good power against alternatives that render the
usual ML inference invalid
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Hausman test
• Need an alternative estimator γ = (β, α) of (a subset

of) the same parameters θ = (β, ψ), dimβ = k
• γ needs to be consistent under misspecification
• Estimates θ̂n = (β̂n, ψ̂n), γ̃ = (β̃n, α̃n)

• Under H0 : f (x , θ) = g(x),
√

n(β̂n − β̃n)
d−→ N(0,S)

where S involves the information matrices for both
estimators, as well as outer products of scores within
and between the models

• Test statistic:

Hn = n(β̂n − β̃n)
′Sn(θ̂n, γ̂n)

−1(β̂n − β̃n)
d−→ χ2

k (16)

• Should have good power against alternatives leading to
parameter inconsistency

• LM form of the test is also available
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White’s (1982)
recommendations

1 Estimate the model by the maximum likelihood
2 Apply the overall misspecification IM test (15)
3 Pass: use the standard ML inference
4 Fail: investigate inconsistency (local misspecification?)

by using Hausman test (16)
1 Pass, no evidence of bias: apply specification robust

inference with the sandwich estimator (13) aka (9)
2 Fail: the model is badly misspecified, model

specification must be re-examined
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GMT (1984) theory
• Gourieroux, Monfort & Trognon (1984a) consider estimation

of the parameters of the first and the second moments in a
model yt = h(xt , θ) + et

• Strong consistency of pseudo-MLE θ̂n ⇔ the likelihood is of
linear exponential family form

f (x , θ) = exp
{

A(θ) + B(x) + C(θ)x
}

(17)

• Asymptotic normality of θ̂n

• Nice properties of the exp families have long been known
(Brown 1987)! We teach exponential families in Stat 7760
and Stat 9710.

• Lower bound on variance (in the sandwich form) is attainable
provided the nuisance parameters/variance structure is
modeled correctly (QGPML)

• Similar strong consistency and asymptotic normality results
for quadratic exponential family:

f (x , θ,Σ) = exp
{

A(θ,Σ)+B(x)+C(θ,Σ)x+x ′D(θ,Σ)x
}

(18)
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GMT (1984) application
Gourieroux, Monfort & Trognon (1984b) provide an application of
the above theory:

• Poisson model: yt |xt ∼ Poi
[
exp(xtb)

]
• Overdispersed Poisson: yt |xt ∼ Poi

[
exp(xtb + εt)

]
• εt ∼ Γ ⇒ yt |xt ∼ negative binomial

• What if the distribution of εt is misspecified, but is known to
have E(exp εt) = 1, V(exp εt) = η2?

• PML with normal (nonlinear least squares), Poisson,
negative binomial, gamma families: estimators b̂ are
consistent and asymptotically normal, asymptotic covariance
matrices derived; relative efficiency?

• QGPML: need consistent estimators of b, η2 for the first
stage; then plug the estimated nuisance parameter η̂2 into
the regular PML objective function; efficiency gains wrt PML

• Simultaneous estimation of b and η2: quadratic exponential
family
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Sandwich estimator
The sandwich estimator of asymptotic variance A−1BA−T is
a common feature. It appears in many ways and in many
areas of applied statistics and econometrics:

• M-estimates (Huber 1974)
• Non-linear regression (Gallant 1987, White 1981)
• Heteroskedastic regression models

(Eicker 1967, White 1980)
• Autocorrelated error terms (West & Newey 1987)
• Survey statistics (Binder 1983, Skinner 1989)
• Longitudinal data and generalized estimating equations

(Diggle, Heagerty, Liang & Zeger 2002)
• Covariance structure/SEM models

(Browne 1984, Satorra 1990, Satorra &
Bentler 1994, Yuan & Hayashi 2006)

Review of history of the sandwich estimator: Hardin (2003)
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Linear regression

yt = Xtβ + εt , V[εt ] = σ2
t 6= const

Sandwich variance estimator, aka
heteroskedasticity-consistent estimator, aka “robust” (which
I don’t like) estimator:

Ve = (X ′X )−1
(∑

t

xtx ′
t e

2
t

)
(X ′X )−1 (19)

A lot is known about it: Eicker (1967), White (1980),
MacKinnon & White (1985), Kauermann & Carroll (2001),
Bera, Suprayitno & Premaratne (2002), . . .
• Scale n/(n − p) to correct some of the small sample

bias (Hinkley 1977)
• Use e2

t /(1− ht) in the “meat” of the sandwich
(MacKinnon & White 1985)

• MINQUE estimator of Bera et al. (2002): unbiased
under heteroskedasticity!
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Finite sample performance
Kauermann & Carroll (2001) consider linear regression,
quasi-likelihood and generalized estimating equations. In
linear regression,
• bias of a simple sandwich depends on the kurtosis of X
• corrected versions have bias of O(n−1) under

heteroskedasticity
• sandwich is less efficient under the null than

s2(X ′X )−1; efficiency also depends on kurtosis (3 times
more variable with normal X ’s; 6 times more variable
with Laplace X ’s)

• CI undercoverage is proportional to V[σ̂2] and variability
of sandwich estimator, and cannot be corrected by the
use of t- rather than z-quantiles

Consistency of sandwich comes with a price: high variability
in finite samples and CI undercoverage — a typical
robustness vs. efficiency trade-off.
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Implementation: Stata’s
robust

Stata’s robust (aka robust option of many estimation
commands):
• Implements an empirical version of (9) = (13)
• Available for all estimation commands that allow

straightforward computation of likelihood scores:
• Observation-by-observation likelihood: numerical

derivatives
• Complex likelihoods: analytical derivatives supplied by

the programmer
• Variation: cluster — the summation is over clusters

of (possibly dependent) observations
• Inference for complex surveys
• Some of the aforementioned corrections for linear

regression model

http://www.stata.com/help.cgi?_robust
http://www.stata.com/help.cgi?svy
http://www.stata.com/help.cgi?regress
http://www.stata.com/help.cgi?regress
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Target of inference?
Freedman (2006): what is the use of (asymptotically)
accurate standard errors if the point estimates are absurd?
True model:

y = β0 + β1x + β2x2 + ε

Fitted model:
y = b0 + b1x + error

The misspecification (omitted nonlinearity) won’t be
detected through the use of sandwich estimator. Estimates
of b0 and b1 will be biased relative to β0 and β1.
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My personal interest
Kolenikov & Bollen (2006) study misspecification in
structural equation/covariance structure models.
• Distinguish structural and distributional misspecification
• A bold evidence of misspecification: negative estimates

of variances — significance?
• Examples of gross structural misspecification with

Heywood cases in population
• Behavior of the sandwich estimator vs. some other

popular variance estimators
• Earlier work by Bollen (1996): an alternative estimator

consistent under milder conditions, natural instruments,
and Hausman structural misspecification test



Misspecified
Models

Stas
Kolenikov

U of Missouri

Problem

Huber (1967)

White (1982)

Gourieroux et.
al. (1984)

Sandwich
estimator

References

Conclusions
• Model misspecification: a common rather than a rare

phenomenon?
• Extensive statistical and especially econometrics

literature
• Estimates are still consistent and asymptotically

normal, although interpretation may suffer
• Variance estimation: information sandwich
• Corrections will be useful for small samples
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