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Abstract

Abstract: This paper analyzes the data on the particular matter of

size of 2.5 microns or less (PM2.5) for the states of North Carolina, South

Carolina and Georgia. The spatio-temporal model features additive semi-

parametric spatial and temporal trends, i.e., thin-plate splines, and B-

splines, respectively. Reduction in the number of nodes for the thin-plate

component is achieved through the use of clustering routines that com-

bine adjacent observations sites. The residual spatial covariance is mod-

elled by an exponential-power family semivariogram with nugget effect.

The parameters of the model are estimated by the generalized EM algo-

rithm which allows to account for the missing data. The relation between

predictions produced by the EM algorithm and the universal kriging is

discussed.

The resulting PM maps suggest the anthropogenic origin of the par-

ticular matter. In particular, the PM2.5 concentrations are lower off the

coast and in sparsely inhabited Appalachians, although the standard er-

rors of predictions for those regions are higher, as those are rather remote

from most monitors. The concentrations of the PM2.5 were found to have

stayed around 10-15 µg/m3 for most of the year, and increase to 25-35

µg/m3 in late summer. It was also found that most of Georgia violates

the federal regulations of 15 µg/m3 most of the time.

1 Introduction

Airborne particular matter has become an important topic of epidemiological
and environmental studies in the last ten or so years when it was understood that

∗Correspondence to 117 New West Bldg., Cameron Ave, CB # 3260, Chapel Hill, NC

27514, or skolenik@unc.edu.
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the particular matter is a fairly important determinant of the deaths, especially
in the elderly, even though the biological mechanisms of its effect are not quite
clear yet. The United States Environmental Protection Agency regulates the
admissible levels of PM10 and PM2.5, the indicators of the concentration of the
particular matter of sizes 10 and 2.5 µm, respectively1. The federal standard
for PM2.5, the particular matter size studied in this paper, was introduced in
1996, and states that “(a) the three-year average of the annual 98th percentile
of PM2.5 concentration measurements at any monitoring site should not exceed
50 µg per cubic meter of ambient air, and (b) the arithmetic mean (over one
or multiple monitoring sites in the region) of site-specific three-year averages
of daily PM2.5 concentration measurements should not exceed 15 µg per cubic
meter” (Cox 2000).

The EPA has also outlined a number of research topics related to the par-
ticular matter, and one of the statistical questions raised is, “Can spatial inter-
polation methods provide more accurate estimates of individual exposures to
particulate air pollution?” (Cox 2000).

The development of spatial statistical models began in the 1950s in mining
and agricultural applications. Most of the developments in spatial methods are
summarized in Cressie (1993). Construction of the spatio-temporal models has
become popular rather recently, in the 1990s.

Probably the most general framework for spatio-temporal modeling is out-
lined by Haas (2002). He proposes to first transform the dependent variable
towards normality by extending its range over the whole real line and reducing
its skewness and kurtosis to zero by suitable power-type transformations. He
then defines two main basic approaches to spatio-temporal modeling as the lo-
cal modeling and the global modeling. The former approach, called LOMAP in
Haas (2002), estimates the model parameters and constructs predictions for a
relatively small number of observations within the prediction cylinder defined
as the observations close to the given one both in time and in space. The
distance in the three dimensional space-time construct is a lexicographic one:
the observations are first sorted by their distance in the spatial plane (spatial
lag), and then by the distance in time (temporal lag). (An earlier version of
this local approach is given in Haas (1998) under the name of moving cylinder
spatio-temporal kriging.). There can be many such cylinders if the quantity of
interest is multivariate. The model is estimated by the Cramér-von Mises dis-
tance between the empirical distribution function and the standard normal CDF
(minimum distance method). Finally, the point prediction and its standard er-
ror are approximated by Monte Carlo simulation from the Gaussian distribution

1The precise definition of the PM2.5 is the particle size at which 50 per cent of the particles

of this size (aerodynamic diameter) are collected by the monitoring device Cox (2000).
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with the estimated parameters2. In the global modeling approach (GLOMAP),
the overall model is obtained as a mixture of the component models with smooth
weights. Haas (2002) then proceeds to define the separable spatio-temporal co-
variogram as a product of the spatial and temporal covariograms, and discusses
some examples of the processes with long memory and/or temporally asymmet-
ric cross-covariograms.

Clearly, this local approach is likely to be beneficial for non-stationary pro-
cesses. Another way to capture non-stationarity might be to search for a non-
linear transformation of the field that would make it “more stationary”, in a
way similar to what variance stabilizing transformations do in a univariate case
(Sampson and Guttorp 1992). A semiparametric modification of this idea with
the estimation of the parameters of the covariance matrix and the radial basis
function representation by the maximum likelihood is discussed in Smith (1996).

The current paper takes an approach similar to Holland et. al. (2000). They
put forward a generalized additive model that accounts for both temporal, sea-
sonal and spatial trends, as well as controls for the meteorological variables, and
model the remaining residual variability as a homogeneous Gaussian random
field. They also clustered monitoring sites, although with a different purpose
than in this paper, namely with that of forming the separate areas over which
the inference is made.

There is a number of practical problems one faces with the contemporary
spatio-temporal data, as it is often the case with the repeated measurement /
longitudinal / panel data. A universal large sample problem is high power of
hypothesis testing methods that leads to rejection of pretty much any hypothesis
(large sample curse). Another problem is that it is extremely difficult to sustain
the complete data matrix with many observation sites in long periods of time,
so missing data is a common and typical problem with longitudinal data.

One of the most appealing ways to deal with the missing data, at least in
the models estimated by the maximum likelihood, is to use the EM algorithm.
This is an iterative algorithm that alternates between prediction of the miss-
ing data, or the sufficient statistic of it, and maximization over the parameter
space. Under some minimal conditions, it converges to the maximum likelihood
estimates. We shall make use of a version of this algorithm in estimating the
parameters of the spatio-temporal process.

The structure of the paper is as follows. Section 2 describes the data and
poses the research questions. Section 3 presents the semiparametric model that
accounts for trends in space and time, as well as for the residual spatial covari-
ance. Then Section 4 describes the principle of the EM algorithm, and shows

2Haas (2002) acknowledges that the standard errors are biased downwards as they do not

account for the fact that the parameters of the generating distribution were estimated, and

suggests using Bayesian methods to fully account for this effect.

3



how it can be applied in our setting. Section 5 presents the estimation results,
and Section 6 concludes.

2 The data

The data used in this research is a part of the EPA data set for 1999 on the
monitors of particular matter. The total number of the continental US monitors
in the data set is 780. The measured variable is the concentration of the partic-
ular matter with the aerodynamic diameter of the particle less than 2.5 microns
(PM2.5), which is the policy variable regulated by the 1996 federal standard.
The observation frequencies generally vary from site to site. The majority of
sites have observations recorded once in three days; there are some that have
daily records, and there are some that only have a few observations for the
whole period. The characteristics of the monitor itself include the geographic
position (latitude and longitude), the area type as a combination of two categor-
ical factors, urbanization (rural, urban, suburban) and land use (agricultural,
industrial, commercial, residential, forest)3, altitude of the monitor, the testing
method, and some other technical information.

We only used a fraction of this rich data set related to North Carolina,
South Carolina, and Georgia. There were 74 monitors across those states (23 in
Georgia, 31 in North Carolina, 20 in South Carolina). No data is available for
Georgia in the fourth quarter of the year. The data were further aggregated into
the weekly averages, so that the data set is filled more regularly. Some biases
might have been introduced at this stage due to the day of the week effect.
The PM2.5 concentrations are generally lower on the weekends when there is
not as much industrial activity and traffic as during the business days, so if
the weekends were under- or overrepresented in a given week, then the weekly
average would be biased up- or downwards.

We ended up with 2765 observations. The proportion of missing data is
rather high: compare the above figure with 74 × 52 = 3848 observations that
should be in the complete data set.

3 The spatio-temporal model

3.1 The time trend

Preliminary analysis of the data showed that the time trend can be isolated
from the data, along with additive effects of the monitor location. A flexible
semiparametric from of the trend was chosen, namely, the B-splines (Green and

3Some cells are empty: there are no combinations of forest and urban or suburban, as well

as agricultural and urban
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Silverman 1994). B-spline builds an approximation to a function (or a collection
of observed points) as the weighted sum of the basis functions:

B(x) =


3|x|3−6x2+4

6 , −1 ≤ x ≤ 1,
(2−|x|)3

6 , 1 < |x| ≤ 2,
0, 2 < |x|.

(1)

f̂(t) = α0 +
K∑

k=1

αkδk(t), t ∈ [0, T ], δk(t) = B
(K
T

(
t− Tk/K

))
(2)

Coefficients α0, . . . , αK can be estimated by any reasonable method — say, OLS
or GLS, in case the errors are (spatially) correlated. The smoothing parameter
K is the number of knots, i.e., points to which the basis functions are tied.
The choice of K, as it always happens in the smoothing world, is based on the
trade-off between the bias and the variance of the functional estimate. Smaller
K lead to greater smoothing, and thus may introduce the oversmoothing bias.
On the other hand, splines with larger K are insufficiently smooth.

Fig. 1 shows the comparison of several fitted trends with different number of
knots. The values of K are 12 (i.e., one per month, which roughly corresponds
to using monthly averages), 20, or 404. The graphs in the top row are those
for separate states. The following five graphs show different subgroups of the
monitors according to the nearby land use, and the graph in the bottom right
gives the comparison of the fitted trend. Note that the splines are the same on
all graphs, with the parameters estimated from all of the data (the last panel).
Judging from the fit of those graphs, we have chosen the value K = 20 for
subsequent analyses.

3.2 The spatial trend

The trend in space was also estimated non-parametrically via the bivariate ver-
sion of splines, known as thin-plate splines (Green and Silverman 1994). The
basis function for this spline evaluated at the point (x, y) is given by

ψ(x, y) =
r log r
16π

(3)

where r =
√
x2 + y2 is the distance from the origin (i.e., the knot of the spline).

Note that unlike the unidimensional case, ψ → ∞ as (x, y) → ∞. Then the
spatial trend can be represented as

Ψ(z) = βxx+ βyy +
J∑

j=1

βjψ(z1 − x(j), z2 − y(j)) (4)

4K = 52 would make the model a saturated one: there will be one estimated parameter

for each of the weeks, and we might have used weekly averages across all monitors, instead.
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Again, the number of knots is the smoothing parameter. Green and Silverman
(1994) operate with the case of J equal to the total number of sites (i.e., one
knot per monitor). It might be desirable to reduce the number of knots to have
a smoother surface. One of the options is to use a regular grid for knots of the
spline. Another option that appears more flexible is to use clustering routines
to place knots in the centers of the clusters of monitors, and that is the option
used in our paper. We had 20 basis thinplate functions with knots in the center
of clusters as found by the k-means routine. As long as we have 74 sites, the
results are essentially equivalent to putting the knot in the center of three or
four adjacent sites.

Another part of the model that can be thought of as a component of the
spatial trend are the additive terms that account for differences in the landscape
surrounding the observation site. There are 11 dummies for 12 categories — see
the footnote on page 4.

3.3 Error covariance

Even after the removal of the geographical trend, some spatial variation can
be expected to be present. The error process is assumed to be homogeneous
in space and uncorrelated over time. The exponential power family of function
was used as the functional form of the variogram:

Cov (εti, εsj) = 2α(1− nugget) exp
(
−

[
d(sitei, sitej)

R

]p)
δst, (5)

where δst is Kronecker’s symbol, α > 0 is the overall variance parameter (i.e.
the variance at each particular site; that is, homoskedasticity across sites is
assumed ); d(·, ·) is the distance between the sites (here, the Euclidean distance
between the geographic coordinates as if they were on a plane); R is the range
parameter; p is the power (shape) parameter (special cases: the exponential
model for p = 1, and Gaussian model for p = 2); and the nugget effect is
allowed for (Smith 2000)5. All four parameters can be fixed or assumed flexible
in the current version of the program; however, it does not seem to make much
sense to have α and R fixed, as those certainly need to be estimated.

3.4 Overall model

Thus, the model that we are estimating is of the following form:

yit = φspatial(i) + φtemporal(t) + φindividual(i) + εit, (6)

5There might have been nicer and richer parametric forms like Matérn class of func-

tions (Smith 2000), but the currently used software (StataCorp. 2001) does not have Bessel

functions implemented.
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where φspatial(i) is the spatial trend modelled by thin plate splines, φtemporal(t)
is the temporal trend modelled by B-splines, φindividual(i) is the additive term
for the area type, and the error terms εit are assumed to be uncorrelated over
time, but correlated over space, so that ∀i Cov εit = Σ.

The parameter vector includes parameters for the spatial trend in the thin
plate spline basis expansion, parameters for the temporal trend, parameters
for the category of the site, and the parameters of the covariance matrix (i.e.,
parameters of the error variogram).

4 The EM algorithm

If the additional assumption that the errors follow a suitable multivariate nor-
mal distribution is made, then the model can be estimated by the maximum
likelihood.

The fact that some of the data are missing is formally not much of a trouble
for maximum likelihood. We can still write down the likelihood function for
each moment in time t as

l(θ|yt) = (2π)−nt/2|Σt(θ)| exp
[
−1

2
(yt − xtβt)Σt(θ)−1(yt − x′tβt)

]
(7)

where the subindex t indicates that observations from different sites are available
at different points in time, so the dimensions of the measured PM2.5 concen-
tration yt, the explanatory variables xt, and the vector of the various trends
coefficients βt, are changing from one week to another, according to the number
of available sites. Computing many determinants and the inverse matrices is
likely to be time consuming, so other alternatives might be sought for. One
such alternative is the EM algorithm.

The EM algorithm is an iterative algorithm that is able to obtain the ML
estimates of a parametric model in the presence of missing data. The term was
introduced by Dempster, Laird and Rubin (1977) where the main convergence
results were also proved, and suggested monographs on the topic are Little and
Rubin (1987) and McLachlan and Krishnan (1997). The algorithm delivers the
estimates for the case when the data are missing at random (MAR), i.e. the
probability that a given variable is not observed in a given case is independent
of the “true value” of that variable that would be observed otherwise6.

The algorithm alternates expectation (E) and maximization (M) steps. At
the expectation step, the conditional expected value of the log likelihood given

6 A more difficult case is when the missing mechanism is non-ignorable, i.e. the probability

that the datum is missing depends on its true value. A simpler case is when the data are

missing completely at random (MCAR): the probability that the given variable is not observed

is constant across the whole sample, i.e. the probability of not observing the data conditional

on all other variables is in fact an unconditional probability (Little and Rubin 1987).
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the observed data Yobs and the current value of the parameter vector θ(h) is
recomputed by using the underlying parametric model for the probability of
being missing (notation follows Little and Rubin (1987)):

Q(θ|θ(h), Yobs) =
∫
l(θ|Y )f(Ymiss|Yobs, θ = θ(h)) dYmiss (8)

One can think of this step as of a sort of imputation step, although imputation
usually refers to coming up with a number for a missing datum, while the E
step of the EM algorithm may also deal with other moments, cross-products,
etc. Another expression often used is “to integrate out” the missing values. In
fact, if there is a sufficient statistic for the model, then it is enough to compute
the expected value of this statistic conditional on the observed values of the
variables involved, and on the current parameter values. At the maximization
step, the full likelihood is maximized with respect to the parameters by using
the “imputed” missing values or the expected values of the sufficient statistic:

θ(h+1) = arg maxQ(θ|θ(h), Yobs) (9)

The procedure is iterated until convergence, which is that the successive param-
eter values do not change much, or the likelihood does not change much, or any
sensible combination of the two.

It is proved (Little and Rubin 1987) that EM algorithms converge to sta-
tionary points of the log likelihood functions under regularity conditions that
seem to be quite general (some sort of smoothness of the likelihood function,
interchange of expectation and differentiation operators, boundedness of the
likelihood function from above). There are also versions of the algorithm (gen-
eralized EM, or GEM) that do not maximize the likelihood at the M step, but
just increase it:

Q(θ(h+1)|θ(h), Yobs) ≥ Q(θ(h)|θ(h), Yobs) (10)

Even in this setting, GEM algorithms converge.
One of the weak point of EM algorithms that needs to be mentioned is that

they do not produce standard errors in the way Newton-Raphson likelihood
maximization procedures do.

4.1 The implementation

Apparently, the missingness is concentrated on the response variable, which is
the measurement of the PM2.5 concentrations, µg/m3. All the design variables
are observed perfectly. In using the EM algorithm, we implicitly assume that the
data are missing at random. This assumption would be violated if an observation
is not registered when the observed value is too high or too low.

9



For the GEM algorithm, the maximization step was split into two steps each
maximizing the likelihood over a partition of the parameter space. At the first
stage, the log likelihood is maximized over the covariance matrix parameters
subspace with fixed values of the additive model parameters. Then the fitted
values are substituted for missing observations (or, equivalently, zero values are
substituted for the residuals if the latter are missing), and the h-th step estimates
of the residual (co)variances are substituted into the sufficient statistic (which
in this case is the outer product of the residual vectors) if both observations are
missing. Then the likelihood function is maximized over the four parameters
of the covariance matrix (nugget, overall variance α, scale parameter R, shape
parameter p). The whole procedure was coded in Stata software (StataCorp.
2001)7.

Then at the second stage of the M step, a GLS regression model is estimated
with the current covariance matrix estimate thus optimizing over the regression
parameters subspace.

The expectation step predicts the fitted values for the GLS regression, and
calculates the current step EM predictions of the Y ’s:

YEM fit =

{
Yobs, Y is non-missing
x′β

(h)
GLS , Y is missing

(11)

Then the residuals e are extracted, and the process reiterated: (the condi-
tional expectation of) the sufficient statistic ee′ is calculated, where the current
estimates of the covariances (i.e., the elements of the covariance matrix) are
used when both residuals are initially missing, and so on.

The starting values of the parameters for the algorithm are the available case
OLS regression results for the regression part of the parameter vector, and some
“reasonable” guesses for the covariance part. See details in the next section.

4.2 Kriging

As is readily seen, the universal kriging formula (e.g., (2.60) of Smith (2000)) is
equivalent to the following:

ŷ0 = xT
0 β̂ + τT Σ−1e (12)

where y0 is the best linear prediction at the point characterized by the regressors
x0; β̂ is the estimate of the regression coefficient of the process Y = Xβ + ν,
Cov ν = Σ, so that xT

0 β̂ is the linear fit, or the trend term, from the model;
τ is the vector of cross-covariances between the observed values of the field Y

7The description of the maximum likelihood procedure built into the package is given in

the Appendix.
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and the unobserved y0 given by the spatial model; and e is the residuals of the
process from the fitted linear regression: e = Y −Xβ̂.

The linear fit term arises naturally from the EM algorithm. This is the
predicted value YEM fit computed at the E step. In fact, if one introduces com-
pletely missing observation into the data set, one can get predictions for it along
the way, but this would be rather inefficient from the computational point of
view, as the pace of convergence of EM algorithm depends on the ratio of miss-
ing information to the complete information, and thus it is not recommended
to introduce fully missing variables unless it is absolutely necessary.

To implement kriging following the ML (or EM) estimation, the estimates
β̂, Σ̂ obtained at the last iteration can be used.

5 Results

Several runs of the algorithm were tried with different pseudorandom number
generator seed that were supposed to produce different clustering of the mon-
itors, and thus slightly different models for the spatial trend. The covariance
matrix estimates when fully flexible model is used are as follows: α = 2.917
(reported s.e. 0.049), p = 1.444 (reported s.e. 0.139), R = 2.305 (reported s.e.
0.210)8, and nugget = 0.450 (reported s.e. 0.027). The reported s.e.s are naive
as they are obtained with the full data matrix assumption.

(The following is a very ad hoc argument.) A crude way to obtain an idea of
how large the standard errors should be is to decompose the information matrix
into the observed and missing information. Section 7.5 of Little and Rubin
(1987) derives the expectation of missing information due to missing data and
gives a simple interpretation of the resulting matrix expression that

observed information = complete information−missing information.

Assuming a simple proportionality, observed information = proportion of ob-
served cases × complete information. Hence, the information is overestimated
by the factor of 2613/3626 ≈ 0.721 where the numerator is the number of ob-
served cases and the denominator is the total number of cases (74 sites × 49
weeks). Thus, the standard errors should be inflated by some 18% to be a better
approximation of reality. As long as a great proportion of the missing data is
accumulated in Georgia in the last quarter of 1999, it should be expected that
the correct standard errors should be adjusted relatively heavier for the last 5

8This corresponds to the distance of about 168.9 miles, s.e. 24.6 miles. At this distance,

the estimate of correlation is about 0.2. Li et. al. (1999) report the correlation scale of the

PM10 hourly measurements of about 7.5 km. In a later paper (Li et. al. 2000), they use

Sampson and Guttorp (1992) approach to non-parametrically estimate the spatial covariance

matrix, and note that the field is not isotropic.
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Table 1: Area type effects.

Area type Rural Suburban Urban
Agricultural -1.716 -1.585 n/a
# sites 5 1 0
# obs. 186 44 0
Commercial 1.162 0.935 -0.267
# sites 1 10 8
# obs. 24 348 272
Forest -1.667 n/a n/a
# sites 3 0 0
# obs. 101 0 0
Industrial -0.943 -0.692 -0.805
# sites 1 7 2
#obs 32 251 78
Residential -2.647 base 0.021
# sites 1 18 17
# obs. 41 652 584

or so terms in the temporal trend, and for the sites in Georgia in the spatial
trend.

The area type φindividual(i) term was described by a set of categorical dum-
mies. The estimated contrasts are given in the Table 1.

The results of kriging are presented at Fig. 2–6. The base (prevalent) cate-
gory “suburban-residential” was selected for the area type term φindividual(i) of
(6). The estimates of the dummies in Table 1 should be added on top of those
kriging estimates for different landscape / land use categories. The patterns of
PM2.5 contents vary over the year, but the general pattern is that the level of
PM2.5 is higher in Georgia than in Carolinas, and tends to decrease towards the
coast and further into the ocean. This seems to support the point of view that
the PM2.5 is by and large a by-product of human activities. As the earlier trend
analysis had shown, there is a spike of PM2.5 levels in late summer, which is
seen at Fig. 5.

6 Conclusions

This paper proposed and exemplified the use of likelihood based methods in the
generalized additive model framework, with trends accounting for (most of the)
variation in space and time, as well as across the sites in different area types.
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Figure 2: Week 1 of observations.
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Figure 3: Week 10 of observations.
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Figure 4: Week 20 of observations.
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Figure 5: Week 30 of observations. Note that all PM2.5 levels are higher than
15 µg/m3.
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Figure 6: Week 40 of observations.

The estimation of the parameters is done through the EM-algorithm to correct
for missing data in the longitudinal data sets. The procedure helped to retain
a large fraction of monitors even though they reported the data infrequently.
The estimates of the spatial covariance matrix suggest that the range of the
error correlations is about two hundred miles, and the shape of the dependence
on the distance between two sites is between the exponential and the Gaussian
decay.

The substantive results imply that the three analyzed states (Carolinas and
Georgia) are in danger of violating the federal standard on PM2.5, except for
the coastal areas, Appalachians, or during the winter months. (This statement
might be attenuated by the fact that the monitors might have been located in
the “problematic” areas that are known to have polluted air, so that the design
of the monitoring network is not a random one.)
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Appendices

A Stata software

Stata software (StataCorp. 2001, Kolenikov 2001) is a general purpose statistical
package that features a built-in procedure to perform the maximum likelihood
estimation of a function specified by the user (Gould and Sribney 1999). The
main steps of the ML algorithm are the following.

1. Optionally, the ML code can be checked for blunt errors, such as no likeli-
hood is calculated for any values; different values of the likelihood are re-
turned for the same parameter values; and some other consistency checks.

2. Optionally, user can specify some starting values for the algorithm.

3. By default, Stata searches randomly for the initial values of the parameters
over the parameter space. It also reverts to a random search if the initial
values specified by the user are not feasible (the log likelihood cannot be
calculated). User can specify the search bounds for particular values of
parameters or equations.

4. By default, Stata performs some simple attempts to improve the initial
values by scaling each of the parameters or equations. As a rule, the ML
algorithm finds pretty good estimates by now.

5. Finally, Stata starts multidimensional optimization of the parameter vec-
tor. In the simplest case, the user only codes the likelihood of the i.i.d.
observations. This is not applicable for our case, however, as long as there
are (spatial) dependencies across sites, so I used another option: coding
the value of the likelihood function to be provided to the optimizer for any
combination of the parameter values (may be a missing value if the likeli-
hood cannot be calculated, e.g. if the range parameter is negative). Other
advanced options of coding the likelihood include possibilities to specify
the gradient and Hessian matrix of the likelihood; if those are not provided
by the user, Stata uses numerical derivatives as described in Gould and
Sribney (1999).

6. The procedure is terminated when the relative change in the parameters
between the two consecutive iterations is small, or absolute change in
the objective function is small, or a maximum number of iterations is
performed. In addition, another necessary criterion can be specified that
the norm of the gradient vector is sufficiently small.
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While performing the multidimensional maximization, the ML optimizer is
tracking concavity of the likelihood function and produces warning messages
if the likelihood function is not concave. If an option of doing more work for
such occasion is specified, then the ML algorithm solves an eigenproblem for the
current value of the Hessian matrix, and combines Newton-Raphson steps along
the directions in the subspace where the eigenvalues are found to be positive
(up to numerical accuracy, defined in a special way) with the steepest accent in
the subspace of negative, zero, or small positive eigenvalues. It is an evidence of
lack of convergence if “not concave” message is produced at the last iteration.
In this application, the lack of convexity was not found to be a problem, so this
option has never been specified.

It turned out that the operation taking most time was filling in the cur-
rent estimate of the covariance matrix from the given parameters that involved
approx. (#sites)2 “slow” operations. Each call need to have been interpreted
and parsed by Stata, while operations like matrix inversion and determinant
calculation are internal to Stata core and thus are relatively fast.
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